If it's not what You are looking for type in the equation solver your own equation and let us solve it.
9x^2+6x=4
We move all terms to the left:
9x^2+6x-(4)=0
a = 9; b = 6; c = -4;
Δ = b2-4ac
Δ = 62-4·9·(-4)
Δ = 180
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{180}=\sqrt{36*5}=\sqrt{36}*\sqrt{5}=6\sqrt{5}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(6)-6\sqrt{5}}{2*9}=\frac{-6-6\sqrt{5}}{18} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(6)+6\sqrt{5}}{2*9}=\frac{-6+6\sqrt{5}}{18} $
| 2+3r=-(3r+6)+5r | | 5x^2+17x-109=0 | | 5=-2b+3b | | (x-3)(x+7)=-21 | | 2+3r=-(3r+6)+5r8 | | z/6+2=z/6+6 | | 12k–4=11k+12 | | 90+2x+4=5x70 | | 15=-3x+7 | | 3+|2x-4|=15 | | .5(2g-8)=-4(g+1) | | (x-21)=(71-x | | 10=2h=2 | | 1+3b=8(b-2) | | 4(u+8)-6u=14 | | -8(x-6)=96 | | 3+y=81 | | 2x^2+1x-105=0 | | -5x+1=-13-3x | | 24/z=2 | | 128=-49-5x=3) | | 21=3y-9 | | g+163=896 | | 8(2p+3)=16p+24 | | 3+8(-6x+6)=387 | | -4a+4+5a=10-27 | | y+9=29 | | 3(y+4)-6=-15 | | 0.666666667(h+18)=330.333333333 | | X/2+y/3=1 | | 982=b+28 | | −8(u+1)=2(1-4u)-9 |